Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834396

RESUMO

Parasitic diseases, including giardiasis caused by Giardia lamblia (G. lamblia), present a considerable global health burden. The limited effectiveness and adverse effects of current treatment options underscore the necessity for novel therapeutic compounds. In this study, we employed a rational design strategy to synthesize retroalbendazole (RetroABZ), aiming to address the limitations associated with albendazole, a commonly used drug for giardiasis treatment. RetroABZ exhibited enhanced in vitro activity against G. lamblia trophozoites, demonstrating nanomolar potency (IC50 = 83 nM), outperforming albendazole (189 nM). Moreover, our in vivo murine model of giardiasis displayed a strong correlation, supporting the efficacy of RetroABZ, which exhibited an eleven-fold increase in potency compared to albendazole, with median effective dose (ED50) values of 5 µg/kg and 55 µg/kg, respectively. A notable finding was RetroABZ's significantly improved water solubility (245.74 µg/mL), representing a 23-fold increase compared to albendazole, thereby offering potential opportunities for developing derivatives that effectively target invasive parasites. The molecular docking study revealed that RetroABZ displays an interaction profile with tubulin similar to albendazole, forming hydrogen bonds with Glu198 and Cys236 of the ß-tubulin. Additionally, molecular dynamics studies demonstrated that RetroABZ has a greater number of hydrophobic interactions with the binding site in the ß-tubulin, due to the orientation of the propylthio substituent. Consequently, RetroABZ exhibited a higher affinity compared to albendazole. Overall, our findings underscore RetroABZ's potential as a promising therapeutic candidate not only for giardiasis but also for other parasitic diseases.


Assuntos
Antiprotozoários , Giardia lamblia , Giardíase , Animais , Camundongos , Albendazol/química , Giardíase/tratamento farmacológico , Giardíase/parasitologia , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Tubulina (Proteína) , Simulação de Acoplamento Molecular , Solubilidade
2.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641292

RESUMO

Dapsone (DDS) is an antibacterial drug with well-known antioxidant properties. However, the antioxidant behavior of its derivatives has not been well explored. In the present work, the antioxidant activity of 10 dapsone derivatives 4-substituted was determined by an evaluation in two in vitro models (DPPH radical scavenging assay and ferric reducing antioxidant power). These imine derivatives 1-10 were obtained through condensation between DDS and the corresponding aromatic aldehydes 4-substuited. Three derivatives presented better results than DDS in the determination of DPPH (2, 9, and 10). Likewise, we have three compounds with better reducing activity than dapsone (4, 9, and 10). In order to be more insight, the redox process, a conceptual DFT analysis was carried out. Molecular descriptors such as electronic distribution, the total charge accepting/donating capacity (I/A), and the partial charge accepting/donating capacity (ω+/ω-) were calculated to analyze the relative donor-acceptor capacity through employing a donor acceptor map (DAM). The DFT calculation allowed us to establish a relationship between GAPHOMO-LUMO and DAM with the observed antioxidant effects. According to the results, we concluded that compounds 2 and 3 have the lowest Ra values, representing a good antioxidant behavior observed experimentally in DPPH radical capturing. On the other hand, derivatives 4, 9, and 10 display the best reducing capacity activity with the highest ω- and Rd values. Consequently, we propose these compounds as the best antireductants in our DDS imine derivative series.


Assuntos
Antioxidantes/síntese química , Dapsona/química , Iminas/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Simulação por Computador , Teoria da Densidade Funcional , Iminas/química , Iminas/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
3.
Microorganisms ; 8(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887277

RESUMO

Phosphorus (P) is considered a scarce macronutrient for plants in most tropical soils. The application of rock phosphate (RP) has been used to fertilize crops, but the amount of P released is not always at a necessary level for the plant. An alternative to this problem is the use of Phosphorus Solubilizing Microorganisms (PSM) to release P from chemically unavailable forms. This study compared the P sorption capacity of soils (the ability to retain P, making it unavailable for the plant) and the profile of organic acids (OA) produced by fungal isolates and the in vitro solubilization efficiency of RP. Trichoderma and Aspergillus strains were assessed in media with or without RP and different soils (Andisol, Alfisol, Vertisol). The type and amount of OA and the amount of soluble P were quantified, and according to our data, under the conditions tested, significant differences were observed in the OA profiles and the amount of soluble P present in the different soils. The efficiency to solubilize RP lies in the release of OAs with low acidity constants independent of the concentration at which they are released. It is proposed that the main mechanism of RP dissolution is the production of OAs.

4.
Pharmacogn Mag ; 13(Suppl 4): S886-S889, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29491649

RESUMO

BACKGROUND: The production of triterpenes from plants for pharmacological purposes varies in concentration, due to genetic and environmental factors. In vitro culture enables the control and increase of these bioactive molecules. OBJECTIVE: To evaluate the effect of plant growth regulators and elicitors in the induction of calli and the production of ursolic acid (UA) and oleanolic acid (OA) in Lepechinia caulescens. MATERIALS AND METHODS: Leaf explants were exposed for the induction of calli at different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP). Methyl jasmonate (MJ) and salicylic acid were used as elicitors. High-performance liquid chromatography method was used to quantify UA and OA content in each treatment. RESULTS: Treatment with 3.0 mg/L of 2,4-D and 0.1 mg/L of BAP produced the best results for calli induction and production of UA (1.57 mg/g dry weight [DW]) and OA (1.13 mg/g DW). Both elicitors facilitated the accumulation of triterpenes. CONCLUSION: The combination of auxins and cytokinins showed favorable results for the induction of calli. Variation concerning the accumulation of UA and OA was observed between treatments. MJ increased the production of triterpenes five times after 8 h of exposure, compared to control treatment. There is a greater accumulation of UA (16.58 mg/g DW) and OA (1.94 mg/g DW) in leaves of wild plants. SUMMARY: Callus cultures of Lepechinia caulescens were obtained from leaf explants treated with 2,4-dichlorophenoxyacetic acid and 6-bencylaminopurineResulting cultures were elicited with methyl jasmonate (MJ) and salicylic acid to increase the production of the triterpenes, ursolic acid (UA), and oleanolic acid (OA)The cultures elicited with MJ increased the production of UA and OA five times, as compared to the control. Abbreviations used: 2,4-D: 2,4-dichlorophenoxyacetic acid, BAP: 6-benzylaminopurine, DW: Dry weight, MJ: Methyl jasmonate, OA: Oleanolic acid, PGRs: Plant growth regulators, UA: Ursolic acid, SA: Salicylic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA